It's like a new diet pill has hit the market, promising instant weight loss with no effort, and now everyone's scrambling to get their hands on it because it's all over their TikTok.
Some folks are talking about DeepSeek as if it's the second coming of AI.
The clamour might be because it's the first serious open non-US model with reasoning capabilities from China.
Most people are confused about which version of DeepSeek they're using.
Most providers offer a distilled, watered-down version that'll run anywhere, so you're not getting the actual full fat version people are talking as to really see its magic, you'd need a small fortune in computing power.
It's like being promised a rare vintage white wine, only to find the bottle filled with slightly grape-scented water. Same brand, same label, but all the depth and character stripped away, leaving you with a hollow imitation.
The hype suggests it can keep pace with anything OpenAI does, which might sound thrilling if you're already tired of whatever ChatGPT or its siblings spit out.
But here's where the alarm bells should start ringing.
Building AI products with stakeholders requires a fundamentally different approach than traditional software development.
From my experience working with AI, success depends not only on technical implementation but also on bridging the gap between AI capabilities and stakeholder expectations.
In this post, I’ll share lessons from guiding stakeholders through AI’s possibilities and limitations.
The goal of creating something "predictable," reliable, and consistent is a shared principle across all the teams I've worked with throughout my career.
Knowing that the same code would always return the same output when given the same inputs was the foundation of everything we built.
We aimed for no surprises, no matter how complex a workflow might be.
Whether implicitly or explicitly using finite state machines, this determinism enabled us to build testable, monitorable, maintainable, and, most importantly, predictable workflows.
We read and shared ideas at conferences, promoting patterns and principles like SOLID and DRY to create functional, composable, and extensible software.
Having lived through the era of a "new JavaScript framework every week," we now find ourselves in the gold rush of the AI agent framework space.
New frameworks appear daily, each claiming to be the 'ultimate' solution for building AI agents, often backed by YouTubers enthusiastically promoting demoware and usually their own library, framework, or SaaS offering. Unfortunately, this enthusiasm can lead companies to uncritically adopt these tools without considering the long-term implications.